Hydroponics - the technique of cultivating plants in water containing dissolved nutrients in a controlled environment without soil.

Hydroponics is not something new, 600 BC, the hanging gardens of Babylon are the first signs of horticulture using water. The reason I became interested in hydroponics started when I was in the Caribbean, I noticed the island of Aruba has a hot dry tropical dessert climate with a constant western wind blowing, few natural resources, and everything has to be imported from external countries.

Agriculture on Aruba is very limit due to climate and scarcity of natural water. However what it does have going for it is a tropical temperature, permanent wind and year long nearly constant daylight hours. I thought this could be a good starting point on the grounds that the missing components, mainly water can be overcome.

It became very clear that hydroponics, due to the fact that it can save more than 90% of water usage in comparison to open field agriculture in this dessert tropical climate was the way to go.


Propogating tomato suckers

Cultivation and propagation can take place in two ways. Sprouting seeds, or using cuttings.
Using cuttings from an existing plant is faster and ensures the genetic material of the new plant is the same as the parent.


Hydroponic tomatoes

Hydroponic plants in a controlled environment generally grow faster and produce more plant material than the same plants in open soil. They produce more fruit and are less prone to disease and infections from insects and the likes.


Indoor hydroponics

More and better quality produce can be obtained from a much smaller area as opposed to growing the same plants in ope ground. By ensuring ideal conditions like light, temperature, humidity and water nutrients.


Hydroponics controller prototype

Using a network connected MCU (ESP32) not only can we measure, monitor and register environmental parameters like temperature, humidity, light, water level, EC and PH and send this as telemetry to a database for analysis, but we can also control these parameters.

Does it actually work? was my first question. Thus to prove I have the capability an environment to test it was set up. To mimic tropical day/night cycles, 200Watt full spectrum LED light modules were obtained. For test purposes, heaters and Peltier elements are used to heat the environment and nutrient solution to mimic tropical conditions. Obviously once in such environment, the opposite will be applicable, thus cooling the environment and water.
Being a wildlife enthusiast it should not surprise you that there are several reptiles that share what I call home. The love warmth and as such the tropical hydroponics proof of concept was setup in the same room. It is a win/win situation for flora and fauna.


  • Low water consumption
  • Optimal space use
  • Large produce volume
  • Constant produce
  • Gather data
  • Learn
  • Gain experience

What form of hydroponics to use: I considered NFT (nutrient film technology), but this involves 24/7 pumps running and any cooling of the nutrient solution will soon be lost as it flows through the piping system to feed the plants. The initial setup was using empty buckets from a local snack bar. Here sweat peppers (capsicums) were placed in a flower pot with loads of small holes for the roots and then hydroton (expanded clay pellets) were used to hold the actual plant. Bucket nearly filled with nutrient solution and added an airstone powered by a small solar panel.

Babylon did intrigue me, so a small vertical wall with 18 pods for leafy green like salad was also added to hydroponics setup. Here a small pump (aquarium 12V) is used to pump the nutrient solution from a container at the base to the top of the wall where it flows down towards the reservoir at the base of the wall. On its way down it flow through cupped containers and replenishes the water for each container.

Vertical hydroponics

Vertical hydroponics wall

Different hydroponics setup

Two types of hydroponics systems are tested. One the 'Kratky" method, in basics, a bucket of nutrient rich water with the plants roots submerged in the fluid. And secondly a vertical "Ducht bucket" system. This comprises of multiple rows of containers stacked on top of each other. Water from a higher elevation reservoir is allowed to flow into the top row of containers and as these fill up, they overflow into the containers below. At the base is a receiving reservoir that collects the water. When full uses a 12V solar powered water pump to refill the top container.